
length and thus facilitate the diffusion of the nonvolatile component accumulating at the 
meniscus. The danger of crystals depositing will be the smaller the lower the initial con- 
centration. One can use (i0) to estimate the effects of all these factors. 

Crystals can form when C m rises to Cs; (3) shows that the crystallization condition can 
be put approximately as ~ ! (D/L) in Cs/C 0, which defines an evaporation rate above which 
crystals may be formed. 

NOTATION 

Co, initial concentration; Cm, concentration near meniscus; P0 and Pm, vapor partial 
pressures in the surroundings and above the meniscus; Cs, saturation concentration; L, capil- 
lary length; r 0, capillary radius; v, flow speed in capillary; e, volume evaporation rate 
from unit surface, cm/sec; Vm, molar volume of water; R, gas constant; T, temperature, K; 
Q, salt flux, g/sec; D, salt diffusion coefficient in solution; Do, vapor diffusion coef- 
ficient in air; t, time; p, crystal density. 
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EFFECTS OF GROWTH RATE PULSATIONS IN BULK-CRYSTALLIZATION OSCILLATIONS 

Yu. A. Buevich and I A. Natalukha UDC 541.48:66.065.5-51 

Weakly nonlinear periodic bulk crystallization conditions are examined in the 
presence of growth rate fluctuations. 

It has been shown [i] that bulk crystallization in a supersaturated or supercooled 
liquid can give rise to oscillations if the nucleation frequency has a markedly nonlinear 
relation to the metastability, where the transition to the oscillatory state occurs as a re- 
sult of normal Hopf bifurcation in the stationary states. It was assumed [i] that each crys- 
tal arising in the bulk grows monotonically without rate fluctuations, which is characteris- 
tic of many actual processes. However, recent measurements show that growth rates can fluc- 
tuate under certain conditions, which may be due to instability in external conditions, e.g., 
microscopic inhomogeneity or substances active in adsorption [2], or to various processes 
at the faces such as microrelief change [3] or alternation in defectiveness associated with 
Frank-Read sources periodically generating dislocation loops [4, 5]. When the growth-rate 
fluctuations are major, the crystallization acquires some novel features not explicable from 
the classical model [6, 7]. For example, instead of a monodisperse composition expected for 
heterogeneous crystallization on ready-made microcrystals of the same size (where nuclei do 
not arise by fluctuation), and where the nuclei are involved in growth immediately on intro- 
duction and grow without forming additional particles, one often gets a resultant distribu- 
tion with marked size variation [8], which indicates a spread in growth rates. Under certain 
conditions, the size curves tend to spread as time passes [2, 3, 9-11]. This is also not 
explicable from the classical theory. The model has been altered to incorporate rate pulsa- 
tions around the mean, which has explained [2, 3, 9] the distribution spread and the con- 
siderable positive skewness, as well as the deformation towards large sizes. 
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Growth-rate fluctuations have marked effects if the ratio of the pulsating and average 
rates is about 0.05; this is quite often so, particularly under industrial conditions, where 
various external random perturbations occur [8-10]. It is therefore necessary to extend the 
results of [I] to situations where the rate can fluctuate in order to extend the applications. 

Here we consider crystallization from a supersaturated solution; the size of each crys- 
tal is [i] characterized by a single parameter: the radius of the sphere equal in volume 
to the crystal, which corresponds to conditions under which the habit change during growth 
is slight. The radius change is described by an equation of motion in size space, where the 
averaged growth rate w(t) is combined with certain random perturbations, i.e., the total rate 
is 

d_f_r = w (t) + V~D~, 
dt 

where ~ is Gaussian white noise having unit spectral density, which is a superposition of 
harmonic oscillations at all frequencies having the same amplitude spread. D is a general- 
ized diffusion coefficient and characterizes the probability that a crystal will pass to an 
adjacent state on the phase axis. The distribution for the polydisperse ensemble in the sus- 
pension then varies in accordance with the Kolmogorov-Fokker-Planck evolution equation: 

with boundary condition 

otOf + 0 "~rO (D_~rOf) (1) 

- -D .Of ] +w(t) f]r=~,----d(c--c~ (2) 
Of r = r ,  CO 

Here 7 is the effective mass-transfer coefficient, which characterizes the crystal removal 
from the system; the assumption that 7 is independent of r corresponds to ideal mixing and 
equal removal probability for crystals of any size. 

We have scanty information on how D varies with the parameters, and there is no agreed 
view; the usual approaches are the assumption that the pulsation coefficient is directly pro- 
portional to the average growth rate: 

D= Dow(t ), Do = const [3, 4, 10, 121 (3) 

and the r~lation 

D Do am ( C--Co )~ - -  , m, k = const  [13--151. ( 4 )  
CO 

As (3) is physically clearer, it is given preference here; in principle, the analysis below 
can be extended without difficulty to (4). 

Homogeneity is assumed, which corresponds to ideal mixing, and also that the solution 
having a low volume content of new-phase elements is quasihomogeneous, when the mass-transfer 
balance equation is written as 

de ( c -- co ) ~ dr 4 = Q  - o  t f(t,  r) dv v = - -  ~ r  ~. 
dt co ~, dt ' 3 ( 5 ) 

We assume that the crystals grow under kinetic conditions with the average rate, which 
is independent of radius: 

w (t) = ~ (c - -  co), ~ = const .  ( 6 )  

Here (6) usually gives a good description of many real situations [2, 3, 9-14], and analysis 
of (1)-(5) for this case is of independent interest. 

We solve (i) and (2) by Fourier transformation and get a relation for f(t, r)(assuming 
r, • 0): 

t d[U(t--'c)] [ ( V - - r )  2 ] 
f (t, r) = 1 ~ exp - -  ~,'~ dx -- (7) 

2 -V-~Do ~ -VV 4DoV 
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~C ~ t 
4 ~  ~ 0 

where the variables are 

f (t - -  .~, o) u (t - -  ~) [ (V - -  r)~ 
V3/2 (V - -  r) exp - -  ?~ 4DoV 

t 

c - -  co , V = [~Co ~" u (z) dz. 
Co t--~ 

d% 

(8)  

Then (7) gives  (5) the form 

co - ~  = Q (u) --  4~tp~cou ,t' J [u (t - -  x)l exp ( "  ?x) • 
o 

• 2 -~o )+ ]/// VD~ V exp ( 4Do)q-  

-t- DoV 1 + err 2 - ~ o  d~ q- [~co S f ( t - -  ~, O) u (t - -  ~) X 
o 

(9) 

[ ( X exp<--?x) DoV 1 q-err 1 V 
2 Do 

where f(t, 0) is defined by an integral Volterra 
has the solution 

-t- 2 f D~ D~ 4DoV ) ] d'~} ' 

equation of the second kind, which always 

1 i S[u(t--x)] exp[--V~ V ]dx-- 
f(t, 0)---- 2-l/~-Do o ] /V  4Do 

f~c~ It f ( t - -x 'O)u(t--~)l-  V ] 
4 V-~o b VV exp ?~ ----4Do d~. 

( i 0 )  

Then a difference from the case examined in [I] is that we have to solve (9) and (I0); 
the following important point should also be noted, namely that moment equations were used 
in [12, 13], where it was assumed without good cause that f(t, 0) = 0, whereas it is readily 
seen that (i0) does not have zero solutions, which means that the corresponding ordinary dif- 
ferential-equation system must be solved with (i0) in the moment method. 

We extend the analysis on the assumption that the time scale T satisfies ~T >> i, which 
is so in most real situations and corresponds to examining the developed asymptotic stage. 
The stationary solution to (9) and (i0) is 

L (o) = s (u3 (DoM-~CoU~ -~/~(1 + 2 3 / t + M ) %  ( 1 1 )  

Q (u~) = 4rip (~cou~) 2 DoV-ZJ (us) ~, 
where 

= I + 4M -I + (I + M) -5/2 (4M -I + 11 + 10M + 3MD + 

and the dimensionless parameter 

M = 4D07 
~CoUs 

2(1+M)-3/2 ( 3 M + - - M ~ ) ,  (12) 
1 + 2 ] / ~  , lq- 2 

( 1 3 )  

characterizes the relative contributions to the growth rate from the pulstion and average 
components: (7) and (II) can be used directly to calculate bulk-crystallization characteris- 
tics in stationary states. 

The real stationary state will be described by (ii) if it is stable under small super- 
saturation perturbations; we put 

u = u s (1 + ~o exp ~0) and ~ (e, 0) = Is (0) ( 1-~ ro exp ~0) 

in (9) and (i0) to get a system of two linearized equations describing the perturbation evo- 
lution, which has a nontrivial solution is the characteristic determinant A(X) is zero. The 
complex equation A(X) = 0 for ~ = i~ defines the neutral-stability surface and the oscilla- 
tion frequency there: 
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x 

1+ A-l((~176 (ico ~  / P ? +  R + 

2g~ [ 3:4_~ (~o ~ 
-t- t]M(l+io3o) 2C_~(oF)+ 4 V M  

1 
A_, (0) -I ~ -~-A~ (0) 

4R 

+-~-[ V~/ 
2R [c_~(o~O) + ~ (A_,(0) 

@ ~ ( l + 2 V  I + M )  - - ~  

] R [ A-~ (0) + V'-M2 A _ : ( & ) + ~ B _ ~ ( & )  4 a]/2~ 

1 +  2F~I+M 

2 V.~ 

3g~A_. (o) 
2~ V~ + 

] + ~-B-~(~~ 

o +C_l<OO,] 

2 f } - - f l ( l + 2 V l ~  C-~((~176 V._~M2 A~(&) 

i o)~ i. M 
1 

A_ 1 (03 ~ ) -3v 
1+ ico ~ 

A-I(~~ ])__ 
1 q- ico ~ 

X 

RA_1 (o~ ~ ] =0, 
2 V~ ) 

Ah(x) =: (1+ M--~+ ix) , Bk(x) =M- ' I2 IAh(O)  - Ah(x)], 

] C~ (x) = M -~/2 [ Ah (x____2_) + A~_~ (x____j 
1+ ix 2 ' 

(14) 

where the parameters are 

_ _  Q '  R =  Q(uZ,  P I =  (uD , g~= RJ'(uDu~ (15) 
CoVU~ co (V) J (us) 

Figure  1 shows t h e  t r a c e  of t he  n e u t r a l - s t a b i l i t y  s u r f a c e  gl = S(R, P1, M) in t he  gz,  R plane.  
The u n s t a b l e  r e g i o n  cor responds  to  gz > S(R, P~, M), so i n s t a b i l i t y  in the  s t a t i o n a r y  s t a t e  
can s e t  in on ly  i f  t h e r e  is  s u f f i c i e n t l y  sharp s u p e r s a t u r a t i o n  dependence fo r  the  n u c l e a t i o n  
f r equency ,  whi le  fo r  gl < S(R, Pz, M), in s p i t e  of  the  f a i r l y  marked m e t a s t a b i l i t y  (R and 
gz a r e  p r o p o r t i o n a l  to  J~u s)  and J ' ( u s ) U  s c o r r e s p o n d i n g l y  wi th  t he  same c o e f f i c i e n t  of  pro-  
p o r t i o n a l i t y ) ,  any f l u c t u a t i o n  in t he  s t a t i o n a r y  s u p e r s a t u r a t i o n  decays  e x p o n e n t i a l l y .  F ig-  
u re  1 shows t h a t  t he  p u l s a t i n g  component (M > 0) t ends  to  s t a b i l i z e  the  p roces s ,  because r a t e  
f l u c t u a t i o n s  lead  to  c e r t a i n  d i s c r e p a n c i e s  in t he  e l i m i n a t i o n  of t he  s u p e r s a t u r a t i o n  by the  
growing c r y s t a l s ,  which tend to  damp the  i n s t a b i l i t y .  The o s c i l l a t i o n  f r equency  a t  the  neu- 
t r a l - s t a b i l i t y  s u r f a c e  then  d e c r e a s e s  (Fig .  2) .  

We assume that the instability with small supercriticality gives rise to a weakly non- 
linear oscillation; the dimensionless supersaturation perturbations and f(@, 0) are repre- 
sented as Fourier series 

~f 
20 

/0 

/ A A 

. f  
I I 

0 t 2 R 

T ~ 

8 , 

6 

.Y 

, , [  [ I [ 

o;# IJ' I lo IO ~ d 

Fig. 1 Fig. 2 

Fig. i. Trace of the neutral-stability surface in the gl, R 
plane for Pl = 0; solid line M = 0, dashed line M = 0.I. 

Fig. 2. Oscillation period T ~ = 2~/m ~ on the neutral-stability 
curve; solid line M = 0, dashe d line M = 0.i. 
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q g ;  ( ~ - w ~  , ; 

Fig .  3. Weakly n o n l i n e a r  o s c i l l a t i o n  c h a r a c t e r i s t i c s :  square  
of  the  o s c i l l a t i o n  ampl i tude  (a)  and f r equency  s h i f t  (b)  as 
functions of the parameter R and the supercriticality g~/g~ - h 
i) M = O; 2) 0.01; 3) 0.05; 4) 0.i; 5) i; 6) 10. 

Fig. 
mean 
0.5. 

/72,? 

~ " 

' ' ' ' G ' ' ' ' ~g ~e ~9 e 
4. Effects of growth-rate pulsations on mean size and 
mass yield: solid line M = 0, dashed line M = 0.I, R = 

u=u~[1 if_ s OnexpincoO], 

(16) 

2 
where @n Pn ~ qn/2, @i = r @-I, @0 = ~ ~ q, q ~ gl/g~ - I. 

We expand the nonlinear terms in (9) and (i0) as series up to the third order of small- 
ness in the perturbations and use (16) to get six equations for the amplitudes Cn and T n 
having n = i and 2 together with @0 and ~0; in the linear approximation, this reduces to two 
linear equations for @z and ~m, which define the (14) surface and a linear relation between 
@l and Tz: 

1 + 2 ~ 1 + M  A i~ R]/I+M B ~(~ ~Bo(~) - - R A  ~(~) R+ (17) 
~ M 2 V ~  2V~ 

The fou r  e q u a t i o n s  fo r  the  z e r o t h  and second harmonics g ive  Cn and ~n fo r  n = O, 2; one sub-  
s t i t u t e s  into the equations for n = 1 to get two linear homogeneous equations for @z and T l 
(q is to be considered as fixed). We use the linear relation between @z and ~z of (17) in 
the nonlinear terms here; the condition for a nontrivial solution gives a complex equation, 
which determines the square of the amplitude for the fundamental in the supersaturation per- 
turbation q and the frequency shift m - m0. These expressions are exceedingly cumbersome 
and are therefore not given. Figure 3 shows calculations on the amplitude and frequency for 
the supersaturation oscillations for J = Cun nucleation kinetics; positive q correspond to 
normal Hopf bifurcation in (ii) [15, 16] and weakly nonlinear periodic states. The main con- 
clusion in [i] thus persists. As the supercriticality increases, so does the amplitude, 
while the frequency decreases; when M increases, the amplitude decreases but the frequency 
increases. Figure 3 shows that the characteristics derived with allowance for the pulsation 
differ substantially from those in the classical model [i] for M = 0.05, which agrees with 
the conclusion [2, 3] that rate fluctuations must be considered for such M. Those pulsations 
also cause a considerable shift in the peak amplitude. Supersaturation oscillations cause 
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oscillations in integral characteristics such as the mean size, surface area, and mass yield 
(Fig. 4). The mean mass yield on growth with fluctuating rates is unaltered by comparison 
with that when the fluctuations are negligible. 

NOTATION 

C and n, constants in the Mayer power-law nucleation kinetics; c, solute concentration; 
co, thermodynamic equilibrium concentration; D, growth rate pulsation coefficient; Do, ki- 
netic coef!icient in (3); f(t, r), size distribution; J, nucleation frequency; m I and m 3, 
moments (first and third orders) of the size distribution; q, square of the amplitude for 
the fundamental in the saturation perturbation; r, crystal radius; r,, critical crystal ra- 
dius; t, time; T, characteristic time scale, u, dimensionless supersaturation; v, crystal 
volume; w, average growth rate; ~, specific mixing rate; ~, kinetic coefficient in (6); 7, 
crystal removal rate from bulk; e = 7t, dimensionless time; E, gaussian white noise; p, 
crystal density; ~n and ~n, amplitudes of harmonic n for the supersaturation perturbations 
and f(e, 0); ~, oscillation frequency. The subscript s denotes that the corresponding quan- 
tity relates to the stationary state; ~ relates to quantities determined at the neutral- 
stability surface; an asterisk denotes the complex conjugate; <> time averaging. 
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